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Abstract

Answer set programming is a leading declarative constraint programming paradigm with wide use for com-
plex knowledge-intensive applications. Modern answer set programming languages support many equiva-
lent ways to model constraints and specifications in a program. However, so far answer set programming
has failed to develop systematic methodologies for building representations that would uniformly lend well
to automated processing. This suggests that encoding selection, in the same way as algorithm selection and
portfolio solving, may be a viable direction for improving performance of answer-set solving. The neces-
sary precondition is automating the process of generating possible alternative encodings. Here we present
an automated rewriting system, the Automated Aggregator or AAgg, that given a non-ground logic program,
produces a family of equivalent programs with complementary performance when run under modern an-
swer set programming solvers. We demonstrate this behavior through experimental analysis and propose
the system’s use in automated answer set programming solver selection tools.

KEYWORDS: answer set programming, program equivalence, automated rewriting

1 Introduction

Developers of answer set programming (ASP) solutions often face situations where individual
constraints of a problem or even the problem as a whole can be expressed in several syntac-
tically different but semantically equivalent ways. Picking the right representation is crucial to
designing these solutions because, given an instance, certain representations perform better (of-
ten much better) than others when processed with modern ASP grounders and solvers. However,
techniques for selecting a particular representation are often ad hoc and tailored to the needs of
the particular application, and require significant programming expertise from the programmer.

About a decade ago, Gebser et al. (2011) presented a set of ”rules-of-thumb” used by their
team in manual tuning of ASP solutions. These rules include suggestions on program rewritings
that often result in substantial performance gains. This was verified experimentally by Gebser
et al. (2011), with all rewritings used in their experiments generated manually. Buddenhagen
and Lierler (2015) studied the impact of these rewritings on an ASP-based natural language
processor and reported orders of magnitude gains in memory and time consumption as a result
of some program transformations they executed manually. Because of these promising results,
researchers proposed to automate the task of program rewriting. Bichler et al. (2016) investigated
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rewritings of long rules guided by the tree decomposition of graphs built of program rules (a
form of join optimization). Hippen and Lierler (2019) proposed a method of applying projection
to rewrite rules based on estimates of the size of the ground program.

These projects demonstrated that automated program rewritings may lead to programs per-
forming better than the original ones when run under current ASP solvers such as gringo/clasp
(Gebser et al. 2015). However, the effects of rewritings are not uniformly the same. In fact, de-
pending on the actual instance they are run with, rewritten programs may perform worse that
the original ones. This is a problem because a non-uniform behavior makes the process of se-
lecting the uniformly best encoding ill defined. Nevertheless, automated rewritings potentially
can significantly improve the state-of-the-art of ASP solving. Namely, the non-uniform behavior
of programs obtained by rewriting opens a possibility of using families of equivalent alternative
programs in algorithm selection and portfolio solving (Rice 1976; Xu et al. 2008; Hoos et al.
2014). In fact, a recent study of suite of six encodings of the Hamiltonian cycle problem shows
that one can train performance prediction models to select, given an instance, a program from
the suite to run on that instance (Liu and Truszczynski 2019), guaranteeing a much better overall
performance on large sets of instances than that of each of the six programs alone.

In this work, we focused on rewritings in which rules using counting based on explicit naming
of a required number of objects are rewritten with the use of a counting aggregate. We designed a
software, Automated Aggregator (AAgg), for automating such rewritings into several equivalent
forms. We studied the software’s applicability and effectiveness. In our experiments, we applied
the software to programs submitted to past ASP Competitions. We found that while many of them
already included aggregate expressions and AAgg did not detect any rules to which it could apply,
in several cases, it was applicable! For those cases, we studied the performance of the original
program and the rewritings produced by AAgg. The results showed that depending on an instance,
rewritings produced by our software often performed better than the original programs. In other
words, the family of encodings generated by AAgg (the original program and its rewritings)
showed a complementary performance on both the instances used in the ASP Competitions and
on instances which we generate ourselves. These results show that AAgg can be used as a tool
for generating collections of encodings to be used in algorithm selection and portfolio solving.
A systematic experimental verification of this claim will be the subject of a future work.

2 Aggregate Equivalence Rewriting

In this section we describe the aggregate equivalence rewriting, its input and output forms. Cur-
rently, we support one input form and three output forms. The input form is a rule that expresses
a constraint that there are b different objects with a certain property by explicitly introducing b
variables to name these b objects. The output forms model the same property by relying, in some
way, on the counting aggregate. For each of the rewritings we establish its correctness and ex-
perimentally study its performance. The correctness follows from Theorems Appendix A.3 and
Appendix A.5, presented and proved in the appendix.

2.1 Preliminaries

We follow the ASP-Core-2 Input Language Format (Calimeri et al. 2020). We consider rules of
the form head← body. The head may consist of a single literal or be empty, the latter represent-
ing a contradiction, making the rule a constraint. The body may contain one or more literals or
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be empty, which constitutes a fact. Literals are composed of an atom, which may be preceded
by not. Negative literals include not; positive literals do not. Atoms have the form p(t1, . . . , tk),
where p is a predicate symbol of arity k and each ti is a term, that is, a constant, variable, or
expression of the form f (t1, . . . , tk) where f is a function symbol of arity k > 0 and each ti is a
term.1

Atoms may also take the form of an aggregate expression. In this work, we focus on counting
aggregates, that is, expressions of the form:

s1 ≺1 #count{t1 : L1; . . . ;tn : Ln} ≺2 s2 (1)

In (1), ti and Li form an aggregate element, which is a non-empty tuple of terms and liter-
als, respectively. The count operation simply counts the number of unique term tuples ti whose
corresponding condition Li holds. The result of the count function is compared by the compar-
ison predicates ≺1 and ≺2 to the terms s1 and s2. These comparison predicates may be one of
{<,≤,=, 6=}. One or both of these comparisons can be omitted (Gebser et al. 2015).

2.2 Input Forms

The aggregate equivalence rewriting takes as input rules of the form:

H←
∧

1≤i≤b

F(Xi,Y),
∧

1≤i< j≤b

Xi 6= X j, G. (2)

where

• H is the head of a rule (H may be empty making the rule a constraint)
• F is a predicate of arity 1+ |Y|
• X1, . . . ,Xb are variables, all in the same position in F
• Y is a comma-separated list of variables, identical in variables and variable positions for

all F in the rule
• G is the remaining body of the rule, possibly empty,

and the following hold true:

• b≥ 2
• H, G, and Y have no occurrences of variables X1, . . . ,Xb

• The terms
∧

1≤i< j≤b Xi 6= X j may instead be a continuous chain of comparisons:∧
1≤i≤b−1 Xi < Xi+1 or

∧
1≤i≤b−1 Xi > Xi+1.

Note that Xi’s need not be in the first position in F , so long as they are all in the same posi-
tion in F and the other variables in F (if any) are identical in all occurrences of F in the rule.
Additionally, some other forms logically equivalent to

∧
1≤i< j≤b Xi 6= X j are also acceptable. For

instance, the condition X1 6= X2 may be expressed as X1 +a 6= X2 +a, for some integer a.

1 AAgg also accepts other term expressions following the definition used by clingo (Gebser et al. 2015).
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2.3 Output Forms

The form of the output depends on the size of Y. When |Y|= 0, the output form is:

H← b≤ #count{X : F(X)},G. (3)

where

• H, b, F , and G are as above
• Aggregate element X : F(X) follows the form term : literal as defined above. The prior,

X , is a tuple of one term, which in this case is a variable. The second, F(X), is a literal.

When |Y| > 0, we perform projection to project out the variable X from F . This gives us an
output form consisting of two rules:

H← b≤ #count{X : F(X ,Y)},F ′(Y),G.

F ′(Y)← F(X ,Y).
(4)

where

• H, b, F , Y, and G are as above
• Aggregate element X : F(X ,Y) follows the form term : literal as above
• F ′ is a new predicate symbol of arity equal to the size of Y, that is, equal to the arity of F

minus one; introducing F ′ ensures that variables in Y are universally quantified.

The correctness of this rewriting, follows from the results presented in the appendix (Theorem
Appendix A.3). Specifically, we show there that if a program is obtained from another program
by rewriting one of its rules in the way described above, then both programs have the same
answer sets (modulo atoms F ′(y), if F ′ is introduced).

2.3.1 Alternative Output Forms

Two alternative, logically equivalent output forms are also available, each derived from the output
form presented above. First, we observe that b ≤ F is logically equivalent to the negation of
F < b. We can then restate the original literal as follows:

not #count{X : F(X ,Y)}< b. (5)

Second, we note that the input language we consider permits integer-only arithmetic. Con-
sequently, the expression not a < b for some integers a and b is equivalent to the conjunctive
expression:

¬(a =−∞)∧¬(a =−∞+1)∧ . . .∧¬(a = b−2)∧¬(a = b−1).

Additionally, the result of the count never returns a negative number. Therefore, we can restate
the aggregate literal in this alternative output form as a conjunction of aggregate literals having
the form:

not #count{X : F(X ,Y)}= 0,

not #count{X : F(X ,Y)}= 1,

. . . ,

not #count{X : F(X ,Y)}= b−1.

(6)
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Note that, due to the precise semantics of logic programs, the equivalence of these two alternative
logic forms relies on additional assumptions about the input program (it has to be splittable) and
the rule to be rewritten. Theorem Appendix A.5 provides conditions under which the rewriting
is guaranteed to be correct. These conditions are checked by our software and only when they
hold, the software proceeds with rewriting into an alternative form (5) or (6), as selected by the
user.

3 The Automated Aggregator System

We now present the Automated Aggregator2 (AAgg) software system for performing the Aggre-
gate Equivalence rewriting. The software provides an automated way to detect rules within a
given program following the input format (2) and rewrite those rules into an equivalent output
format (3/4), (5), or (6).

3.1 Usage

The software relies on the clingo Python module provided by the Potassco suite (Gebser et al.
2019). The module is written in Python 2.7. As such, Python 2.7 is required to run the Automated
Aggregator system. Installation information is provided in the software’s README file. The
Automated Aggregator is invoked as follows:

python aagg/main.py

[-h,--help] [-o,--output FILENAME] [--no-rewrite]

[--no-prompt] [--use-anonymous-variable]

[--aggregate-form ID] [-d,--debug] [-r,--run-clingo]

[encoding_1 encoding_2 ...]

The -h flag lists the help options. The encoding(s) are the filename(s) of the input encod-
ing(s), and the output is the desired name for the output file. If no output filename is given,
one is generated based on the first input filename given. When a candidate rule is discovered,
the user is shown the proposed rewriting and prompted for confirmation. If the --no-rewrite

flag is given, no prompts are given and no rewriting is performed. If the --no-prompt flag is
given, no prompts are given and rewriting is performed where possible. The ID supplied to the
--aggregate-form argument informs the program which aggregate form to use when perform-
ing rewrites: its values 1, 2, and 3 correspond to aggregate forms (3/4), (5), and (6), respectively.
The -d debug flag directs the application to operate with verbosity, printing details during the
rewriting candidate discovery process and printing some statistics after the application’s con-
clusion. The --r run-clingo flag directs the application to run the resulting program through
clingo after any rewritings are performed.

Finally, the --use-anonymous-variable flag indicates an additional modification of the
output form to be performed. It uses the anonymous variable ‘ ’ in place of the variable X in
the output forms listed above, with some additional modifications of the rule to ensure the trans-
formation is correct. Specifically, we replace the aggregate element X : F(X ,Y) with F( ,Y) :
F( ,Y) rather than with : F( ,Y), because the latter is not a valid gringo syntax. We mention

2 The system and all encodings, test instances, and driver programs can be found online at:
https://drive.google.com/drive/folders/1lqRsy9HGIDHvyX\_Pvkc8zKt1-xvbwcAp?usp=sharing
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this option for completeness sake, since it is available in our implementation. However, we found
that the programs generated when using and when not using the anonymous variable are identical
after grounding, so we neither discuss it further nor use these rewritings in our experiments.

By default all boolean flags are disabled and the aggregate-form ID is set to 1 indicating output
form (3). At least one input encoding filename must be specified.

3.2 Methodology

The methodology used for discovering whether a rule is a candidate for the aggregate equivalence
rewriting is as follows. The given logic program(s) are parsed by the clingo module, generating
an abstract syntax tree for each rule. Each such tree is passed to a transformer class for pre-
processing. After preprocessing, some information is gathered from the program as a whole;
specifically, predicate dependencies are determined, which in turn determine when output forms
(5) and (6) are appropriate for a given rule (see the appendix for more details). Rules are then
passed individually to an equivalence transformer class for processing. After processing, and if
the requested rewriting is possible and confirmed by the user, the rewritten form of the rule is
returned. Otherwise the original rule is returned. All returned rules, rewritten or not, are collected
and output to the desired output file location. Optionally, the resulting program is then run using
clingo.

When a rule is passed to the equivalence transformer for processing, it first undergoes a pro-
cess of exploration, which traverses the rule’s abstract syntax tree, recording comparison literals
between two variables as well as other pertinent information found along the way. These compar-
ison literals are scrutinized to determine whether a subset of the comparisons follows the form
given in (2) or some equivalent format as detailed in the section 2.2. The process also identifies
those variables that play the role of X1, . . . ,Xb as in (2). The rule is then analyzed to determine
whether there are b occurrences of some positive literal of predicate F with the arguments Xi and
Y, where each Xi, 1≤ i≤ b, exists at least once in the set of occurrences, and Y is the same for
each occurrence and contains no variables X1, . . . ,Xb. Let us call this set of b literals combined
with the corresponding comparisons following the form given in (2) or equivalent, the rule’s
counting literals. Similarly, we denote the variables playing the role of the variables Xi as given
in (2) as the rule’s counting variables.

After gathering counting literals and counting variables, the equivalence transformer verifies
that the counting variables are not used within literals anywhere in the rule excluding literals
within the set of counting literals. If this verification fails or if any of the constraints for the
counting literals cannot be satisfied or if no such set of counting variables can be obtained, then
the rule is not fit for rewriting. As a result, no rewriting is performed on the rule and the original
rule is returned.

In the other case, if the verification succeeds (the counting literals and the counting variables
satisfy all the required constraints), then we proceed as follows. If the requested output form is
(3/4), then we check whether |Y| > 0 and rewrite the rule accordingly using (3) or (4). If the
requested output form is (5) or (6), then the predicate dependency condition related to splitting
must be verified (see the appendix for details). If it holds, then we check whether |Y| > 0 and
rewrite the rule into the desired form (5) or (6), adding the second of the two rules in (4) when
|Y|> 0.

Note that the user is first prompted for confirmation for each rewritten rule before the rule is
added to the final program. If the user denies a rewriting, then the original rule is used.
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Table 1. Problem Domains of ASP Competition Encodings with Rules for Rewriting

ASP Competition Year Problem Domain of Encodings

2009 Golomb Ruler & Wire Routing
2014 Steiner Tree
2015 Steiner Tree & Graceful Graphs

3.3 Limitations

Here we discuss the limitations of the Automated Aggregator in its current form.

1. The rewriting is one-directional. The software will only rewrite rules from the form (2)
into rules of the forms (3/4), (5), and (6). As it stands, the system will not rewrite rules
given in any of the forms (3/4), (5), or (6) into rules of any of other form.

2. In the cases when multiple rewritings are possible for a single rule, only one rewriting will
be detected and performed. To illustrate, if the form given in (2) occurs twice in one rule
over a disjoint set of variables and predicates, where both sets of counting literals consider
the other set as part of G and all conditions hold, then only the set of counting literals with
the highest number of counting variables will be used for rewriting. If both sets contain
the same number of counting variables, then one is chosen based on the order in which the
comparisons using those variables occur in the rule.

3. There are some cases in which the software will not recognize a valid rewriting when
one exists. These cases mostly lie in the many obscure ways of representing a chain of
comparisons equivalent to that in (2). However, there are no known cases in which an
incorrect rewriting will be proposed when no valid rewriting is possible. More details are
given in the software’s README document.

4 Experimental Analysis

The Automated Aggregator system has been made available for download online.3 Encodings
with which the application was tested, their corresponding instances, and (Python) scripts for
driving such tests, are included there too.

4.1 Automated Aggregator in Practice

The Automated Aggregator system was applied to logic programs in gringo syntax submitted to
the 2009, 2014, and 2015 Answer Set Programming Competitions. Of the 58 encodings given to
the application, five contained rules which were candidates for the rewriting described. Table 1
lists the encoding problem names and the ASP Competitions for which they were developed.

Additionally, to provide an example of the functionality of AAgg, the system was applied to
an encoding for the Hamiltonian Cycle problem. The original program is shown in Figure 1. The
rewritten program, as output by AAgg, is shown in Figure 2. We see that the first two constraints in
the program are both rewritten with the necessary projection performed as in (4). Experimental

3 https://drive.google.com/drive/folders/1lqRsy9HGIDHvyX\_Pvkc8zKt1-xvbwcAp?usp=sharing
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node(X) :- edge(X,Y).

node(X) :- edge(Y,X).

{ hc(X,Y) } :- edge(X,Y).

:- hc(X,Y), hc(X,Z), Y!=Z.

:- hc(X,Y), hc(Z,Y), X!=Z.

reach(X,Y) :- hc(X,Y).

reach(X,Y) :- hc(X,Z), reach(Z,Y).

:- node(X), node(Y), not reach(X,Y).

Fig. 1. Example Hamiltonian Cycle problem encoding. Original version.

node(X) :- edge(X,Y).

node(X) :- edge(Y,X).

{ hc(X,Y) } :- edge(X,Y).

:- 2 <= #count{ Y : hc(X,Y) }, hc_project_Z(X).

hc_project_Z(X) :- hc(X,Y).

:- 2 <= #count { X : hc(X,Y) }, hc_project_Z1(Y).

hc_project_Z1(Y) :- hc(X,Y).

reach(X,Y) :- hc(X,Y).

reach(X,Y) :- hc(X,Z), reach(Z,Y).

:- node(X), node(Y), not reach(X,Y).

Fig. 2. Example Hamiltonian Cycle problem encoding. Rewritten version.

results for these encodings when applied to a generated set of hard instances are given in the
following section.

4.2 Experimental Results

Results were gathered by systematically grounding and solving each instance-encoding pair
within families of encodings for each problem type. The data sets of instances we used are avail-
able together with the AAgg tool (see the url listed earlier).4 Each encoding in each family of
encodings was run for each instance. The total grounding plus solving time of instance-encoding
pairs were recorded and compared.

The precise encodings used as input to the AAgg software for gathering results are listed in
Table 2. Two output encodings are generated for each input encoding and together they form

4 We thank Daniel Houston and Liu Liu for providing us with the data sets of instances for the Latin Square and the
Hamiltonian Cycle problems, respectively. The data sets for the remaining problems were generated by software tools
we developed for the purpose. These tools and descriptions of instance sets used in experiments can be found at the
AAgg site.
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Table 2. Sources of Encodings Used for Experimental Results

Source of Encoding Problem Domain of Encodings

ASP Competition 2009 Wire Routing
ASP Competition 2015 Steiner Tree & Graceful Graphs

Home-Brewed Latin Squares& Hamiltonian Cyclea

a We are thankful to Daniel Houston and Liu Liu for supplying the Latin Squares and Hamiltonian Cycle instance sets,
respectively.

Table 3. Result Statistics by Problem Domain

Encoding Wins Exclusive Wins Wins by 20% Wins by 50%

Wire Routing Input Encoding 122 (58.4%) 34 (27.8%) 115 (92.0%) 97 (77.6%)
AAgg Output Form (3/4) 50 (24.0%) 26 (52.0%) 48 (87.3%) 38 (69.1%)
AAgg Output Form (6) 37 (17.7%) 13 (35.1%) 39 (90.7%) 23 (53.5%)

Steiner Tree Input Encoding 130 (33.9%) 0 (0%) 1 (0.8%) 0 (0%)
AAgg Output Form (3/4) 123 (32.1%) 0 (0%) 4 (3.3%) 0 (0%)
AAgg Output Form (6) 130 (33.9%) 0 (0%) 6 (4.6%) 0 (0%)

Graceful Graphs Input Encoding 212 (37.3%) 62 (29.2%) 182 (85.8%) 128 (60.4%)
AAgg Output Form (3/4) 97 (17.1%) 23 (23.7%) 82 (84.5%) 58 (59.8%)
AAgg Output Form (6) 259 (45.6%) 51 (19.7%) 229 (88.4%) 169 (63.7%)

Latin Squares Input Encoding 5611 (77.7%) 5 (0.1%) 4435 (79.0%) 2003 (35.7%)
AAgg Output Form (3/4) 1432 (19.8%) 0 (0%) 655 (45.7%) 86 (6.0%)
AAgg Output Form (6) 176 (2.4%) 0 (0%) 64 (36.4%) 7 (4.0%)

Hamiltonian Cycle Input Encoding 72 (28.7%) 47 (65.3%) 59 (81.9%) 34 (47.2%)
AAgg Output Form (3/4) 102 (40.6%) 69 (67.7%) 79 (77.5%) 52 (51.0%)
AAgg Output Form (6) 77 (30.7%) 45 (58.4%) 64 (83.1%) 44 (57.1%)

the encoding family for that problem domain. The two output forms used were those shown in
equations (3/4) and (6); previous experiments showed extreme similarity between forms (3/4)
and (5), so (5) was left out to preserve machine time. The machine used for testing contained an
Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz with 16GB RAM.

Result statistics are shown in Table 3. Data is grouped by problem domain. The first line of
each grouping shows statistics for the input encoding. The second line shows statistics for the
encoding output by the AAgg software using the first line as input and the output rule form (3/4)
as the selected output form. The third and final line of each grouping shows statistics for the
encoding output by the AAgg software again using the first line as input but now selecting the
output form (6) as the chosen output form.

A win is when an encoding grounds and solves for an instance in the shortest amount of time
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as compared with the other two encoding in its grouping. The percentage value beside the win
count is the proportion of instances which that encoding won relative to the number of instances
in the instance set for which at least one of the three encodings terminated within the total time
limit set for grounding and solving. This time limit was set to 200 seconds in all experiments,
except those with encodings of the Hamiltonian Cycle problem that used a timeout value of 400
seconds due to the relative difficulty of the instance set (in all problem domains except for the
Hamiltonian Cycle domain, the number of instances for which no encoding computed an answer
within the time limit was very small; for the Hamiltonian Cycle problem, even with the increased
time limit, it was significant).

An exclusive win is when the encoding is the only encoding in its grouping to find a solution
(or determine there is no solution) for an instance while both of the other two encodings failed
to do so within the time limit. The column shows the number and the percentage of wins which
were exclusive wins for the encoding. The next column shows the number and the percentage of
wins by a margin of at least 20% (this is when the best encoding runs at least 20% faster than
the second one; in case the of exclusive wins, we count a win as by at least 20%, if it is faster
by at least 20% than the time limit used). The data in the last column shows the numbers and
percentages of wins by at least 50% (it is to be interpreted similarly to the data in the previous
column).

Results indicate that in some cases, the rewriting can provide complementary performance
of encodings. Specifically, the results for the Wire Routing, Graceful Graphs, and Hamiltonian
Cycle problems support the claim. This is shown first by the fact that for each problem, each of
the encodings scores a significant proportion of wins, and that among those wins a significant
proportion are exclusive wins, and an even greater proportion (about 50% or more) are wins by at
least 50%. This means that about half of the times when an encoding outperforms the two other
encodings, it outperforms both by a factor of at least two.

The Steiner Tree results indicate that sometimes the rewriting produces little to no effect at all.
While each encoding for the problem registers a similar proportion of wins, there are very few
instances (just eleven out of 283) when the best encoding outperforms the other two by 20% or
more, and no instances when the best encoding would outperform the other two by 50% or more.
The Latin Squares results are mixed in the sense that for the most part the original encoding
works best. However, one of the rewritings registers almost 20% of wins. Moreover, about 45%
of those wins are by 20% or more and 6% by 50% or more.

In summary, we see that the rewriting can provide programs that perform complementary to the
original. This complementarity is perhaps somewhat surprising, because aggregates are assumed
to lead to better performance. Our results show that the picture is more complicated and whether
rewriting with aggregates yields better performance is instance-dependent. It is also interesting
to note that for some encodings replacing simple counting, like that used in the Latin Square
encodings (no two identical elements in a row or column), with the count aggregates does not
lead to substantial improvements. Finally, for some problems (in our experiments for the Steiner
Tree problem) where complementary behavior does emerge, the differences in performance are
relatively small.

5 Future Work

As detailed in Section 3.3, the Automated Aggregator software can be improved. Extending the
software so that it rewrites rules by eliminating the counting aggregate by inverting the current
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rewriting seems to be a potentially most beneficial direction. Indeed, our results show that in-
troducing aggregates does not guarantee uniformly improved performance. This gives reason to
think that removing the counting aggregate, that is, rewriting it in an explicit way, has a potential
of generating encodings that on many instances may perform better. Just like the present ver-
sion of the AAgg system, this could yield collections of encodings of complementary strengths.
Moreover, this form of rewriting would be quite widely applicable, as the counting aggregate is
commonly used.

Expanding the software to detect and perform multiple aggregate equivalence rewritings on
a single rule and to detect more obscure forms of representations are two other directions for
improvement. While necessary to ensure the software has a possibly broad scope of applicability,
we do not expect these extensions to have a major practical impact due to low frequency with
which such less intuitive and convoluted forms of modeling are found in programs.

Automated rewriting has been studied before. The PROJECTOR system (Hippen and Lierler
2019) and the lpopt system (Bichler et al. 2016) are two notable examples. That earlier work
sought to develop rewritings improving the performance over the original ones. That goal is in
general difficult to meet; both systems were shown to offer gains, but the rewritten encodings
are not always performing better. Our goal was different. We aimed at rewritings of varying
relative performance depending on input instances. With the AAgg system we showed that even
a rather simple rewriting consisting of introducing the count aggregate often leads to families of
encodings with complementary strengths (areas of superior performance). This opens a way for
using machine learning to develop models in support of effective encoding selection or encoding
portfolio solving (Liu and Truszczynski 2019). In such work, to generate promising collections
of encodings, one could use the AAgg system, with extensions mentioned above, but also other
program rewriting software such as PROJECTOR and lpopt which, as noted, while they do yield
good encodings, often better than the original one, they do not perform uniformly better.
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Lecture Notes in Computer Science, vol. 10184. Springer, 114–130.

BUDDENHAGEN, M. AND LIERLER, Y. 2015. Performance tuning in answer set programming. In Pro-
ceedings of the 13th International Conference on Logic Programming and Nonmonotonic Reasoning,
LPNMR 2015, F. Calimeri, G. Ianni, and M. Truszczynski, Eds. Lecture Notes in Computer Science, vol.
9345. Springer, 186–198.

CALIMERI, F., FABER, W., GEBSER, M., IANNI, G., KAMINSKI, R., KRENNWALLNER, T., LEONE, N.,
MARATEA, M., RICCA, F., AND SCHAUB, T. 2020. ASP-Core-2 input language format. Theory Pract.
Log. Program. 20, 2, 294–309.

FERRARIS, P., LEE, J., LIFSCHITZ, V., AND PALLA, R. 2009. Symmetric splitting in the general theory of
stable models. In Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI
2009, C. Boutilier, Ed. 797–803.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., LINDAUER, M., OSTROWSKI, M., ROMERO, J., SCHAUB,
T., AND THIELE, S. 2015. Potassco user guide.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2011. Challenges in answer set solving.
In Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning - Essays Dedicated to
Michael Gelfond on the Occasion of His 65th Birthday, M. Balduccini and T. C. Son, Eds. Lecture Notes
in Computer Science, vol. 6565. Springer, 74–90.



12 Michael Dingess and Mirosław Truszczyński
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Appendix A Correctness of Rewritings

Let us consider the following program rule (H may be ⊥):

H←
∧

1≤i≤b

F(Xi,ZZZ,ZZZ′′′),Q(XXX),G(ZZZ′′′,ZZZ′′′′′′). (A1)

where F is a predicate, XXX a tuple of variables X1, . . . ,Xb, Q(XXX) is a list of literals over variables
X1, . . . ,Xb, and ZZZ,ZZZ′′′ and ZZZ′′′′′′ are three pairwise disjoint tuples of variables, and disjoint with XXX ,
and H contains none of Xi.

Let P be a program containing rule (A1) and let P′ be the program obtained from P by replacing
that rule with the two rules

H←
∧

1≤i≤b

F(Xi,ZZZ,ZZZ′′′),Q(XXX),G(ZZZ′′′,ZZZ′′′′′′),F ′(ZZZ).

F ′(ZZZ)← F(X ,ZZZ,ZZZ′′′).
(A2)

where F ′ is a predicate not occurring in P.

Theorem Appendix A.1
The programs P and P′ have the same answer sets modulo ground atoms of the form F ′(zzz).

Proof
(Sketch) Consider a ground instance r of rule (A1) and let a be the first atoms in the body of r
(that is, a ground instance of the atom F(X1,ZZZ,ZZZ′′′)). In P′ there are ground rules r′ and r′′ obtained
from (A2) using the same variable instantiation as that used to produce r. Clearly, r contributes to
the reduct of ground(P) if and only if r′ and r′′ contribute to the reduct of ground(P′). Moreover,
if they do, r “fires” in the least model computation if and only if r′ fires in the least model
computation. It follows that an interpretation I of P is an answer set of P if and only if I∪J is an
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answer set of P′, where J consists of all atoms F ′(zzz) such that F(x,zzz,zzz′′′) ∈ I, for some constant x
and a tuple of constants zzz′′′.

Next, we recall the following theorem proved by Lierler (2019).

Theorem Appendix A.2
Let H be an atom (H may be ⊥), G a list of literals, X a variable, ZZZ a tuple of variables, each
different from X and each with at least one occurrence in a literal in G, and F a predicate symbol
of arity 1+ |ZZZ|. If b is an integer, and X1, . . . ,Xb are variables without any occurrence in H and
G, then the logic program rule

H←
∧

1≤i≤b

F(Xi,ZZZ),
∧

1≤i< j≤b

Xi 6= X j,G. (A3)

is strongly equivalent to the logic program rule

H← b≤ #count{X : F(X ,ZZZ)},G. (A4)

where
∧

is used to represent a sequence of expressions separated by commas.

Combining the two results leads to the following result that proves the correctness of the first
rewriting implemented by our tool AAgg.

Theorem Appendix A.3
Let P be a program containing a rule r of the form

H←
∧

1≤i≤b

F(Xi,ZZZ,ZZZ′′′),
∧

1≤i< j≤b

Xi 6= X j, G(ZZZ′′′,ZZZ′′′′′′). (A5)

under the same assumptions about variable tuples XXX ,ZZZ,ZZZ′′′ and ZZZ′′′′′′ as before. If ZZZ is empty, let P′

be P. Otherwise, let P′ be obtained from P by replacing r with the rules (A2), adjusting the first
of them to contain

∧
1≤i< j≤b Xi 6= X j in place of Q(XXX). Let us call the first of these two rules r

(reusing the name of the original rule). Finally, let P′′ be obtained from P′ by replacing r with the
corresponding rule (A4). Then, the programs P and P′ have the same answer sets (in the case,
when ZZZ is not empty, the same answer sets modulo atoms F ′(zzz)).

Proof
Clearly, rule r is a special case of a rule of the form (A1). By Appendix A.1, programs P and P′

have the same answer sets (when ZZZ, is not empty, the same answer sets modulo atoms F ′(zzz)).
The rule r in P′ is of the form (A3) required by Theorem Appendix A.2. Applying this theorem
shows that programs P′ and P′′ have the same answer sets and the assertion follows.

Once a program has a rule of the form (A4), we can often modify it further by exploiting
alternative encodings of the aggregate expressions. In particular, under some assumptions about
the structure of the program, we can replace a rule (A4) by

H← not #count{X : F(X ,ZZZ)}< b,G. (A6)

where we assume that the variable X is not a variable in ZZZ, and that all variables in ZZZ appear in
G.

We recall that a partition (Pb,Pt) of a program P is a splitting of P if no predicate appearing in
the head of a rule from Pt appears in Pb (Lifschitz and Turner 1994; Ferraris et al. 2009). A well-
known result on splitting states that answer set of programs that have a splitting can be described
in terms of answer sets of programs that form the splitting.
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Theorem Appendix A.4
Let P be a logic program and let (Pb,Pt) be a splitting of P. For every answer set Ib of Pb, every
answer set of the program Pt ∪ Ib is an answer set of P. Conversely, for every answer set I of P,
there is an answer set Ib of Pb such that I is an answer set of Pt ∪ Ib.

This result implies that in programs that have a splitting, a rule in Pt containing in its body
an aggregate expression involving only predicates appearing in Pb can be replaced by a rule
in which this aggregate expression is replaced by any of its (classically) equivalent forms. We
formally state this result for the case of rules of the form (A4).

Theorem Appendix A.5
Let P be a logic program and let (Pb,Pt) be a splitting of P. If Pt contains a rule of the form (A4)
and F appears in Pb, then P and the program P′ obtained from P by replacing the rule (A4) by
the rule (A6) have the same answer sets.

Proof
(Sketch) Let P′t be the program obtained from Pt by replacing the rule (A4) by the rule (A6). It is
clear that (Pb,P′t ) is a splitting of P′. Let I be an answer set of P. By Appendix A.4, there is an
answer set Ib of Pb such that I is an answer set of Pt ∪ Ib. In particular, I is an answer set of the
program Ib ∪ ground(Pt). Let Q be the program obtained by simplifying the bodies of the rules
in ground(Pt) as follows. If a conjunct c in the body of a rule in ground(Pt) involves only atoms
from the Herbrand base HB(Pb) of Pb, we remove c if Ib |= c, and we remove the rule, if Ib 6|= c.
Because atoms from HB(Pb) do not appear in the heads of the rules in ground(Pt), I is an answer
set of Q∪ Ib.

We denote by Q′ the program obtained by the same simplification process from ground(P′t ).
From the definition of P′t it follows that Q′ = Q (indeed, the only difference between Pt and P′t
is in the bodies of some rules, in which an aggregate built entirely from the atoms in HB(Pb)

is replaced by a classically equivalent one; thus, both expressions evaluate in the same way
under Ib and the contribution of the corresponding rules to Q and Q′ in each case is the same).
Consequently, I is an answer set of Q′ ∪ Ib. Because atoms from HB(Pb) do not appear in the
heads of the rules in ground(P′t ), I is an answer set of ground(P′t )∪ Ib and, because (Pb,P′t ) is a
splitting of P′, also an answer set of P′. A similar argument shows that answer sets of P′ are also
answer sets of P.

It is clear that the same argument applies to other similar rewritings, for instance, to the one
that replaces the rule (A3) by the rule

H←
∧

0≤i<b−1

not i = #count{X : F(X ,ZZZ)},G. (A7)

where, as before, we assume that the variable X is not a variable in ZZZ, and that all variables in ZZZ
appear in G.

Theorem Appendix A.5 establishes the correctness of the two remaining rewritings imple-
mented by the tool AAgg. The tool is designed to check for splitting and allows the rewriting to
take place only if the conditions of Appendix A.5 hold.


